Projection-Free CNN Pruning via Frank-Wolfe with
Momentum: Sparser Models with Less Pretraining

Hamza EIMokhtar Shili'! Natasha Patnaik® Isabelle Ruble?
Kathryn Jarjoura? Daniel Suarez Aguirre?

!Rice University, Computer Science Department

2Rice University, Computational Applied Math & Operations Research Department

Abstract

We investigate algorithmic variants of the Frank—Wolfe (FW) optimization method
for pruning convolutional neural networks. This is motivated by the “Lottery
Ticket Hypothesis™, which suggests the existence of smaller sub-networks within
larger pre-trained networks that perform comparatively well (if not better). Whilst
most literature in this area focuses on Deep Neural Networks more generally,
we specifically consider Convolutional Neural Networks for image classification
tasks. Building on the hypothesis, we compare simple magnitude-based pruning,
a Frank—Wolfe style pruning scheme, and an FW method with momentum on a
CNN trained on MNIST. Our experiments track test accuracy, loss, sparsity, and
inference time as we vary the dense pre-training budget from 1 to 10 epochs. We
find that FW with momentum yields pruned networks that are both sparser and more
accurate than the original dense model and the simple pruning baselines, while
incurring minimal inference-time overhead in our implementation. Moreover, FW
with momentum reaches these accuracies after only a few epochs of pre-training,
indicating that full pre-training of the dense model is not required in this setting.

1 Problem Statement and Notation

Convolutional neural networks are ideal models for image classification and related computer vision
tasks. However, large models with many parameters pose serious challenges - both in terms of training
time and memory. In this paper, we motivate and outline a series of computational experiments
aimed at evaluating different variants of the Frank-Wolfe (FW) algorithm for neural network pruning,
intending to find well-performing sparser models.

Notation - From Deep Neural Networks to Convolutional Neural Networks. To represent an
arbitrary neural network with N neurons, we follow the notation used in [13] and [14]. Let x € R?
denote the input vector and 6 for i € [N] = {1, ..., N} denote the parameters/ weights associated
with the i-th neuron. With these inputs, the i-th neuron can be represented as a function o (x, 6;).

Although this function o (-, 6;) can take on general forms, [13] and [14]] consider the specific case of
a two-layer network for simpler analysis (a representative example of more complex architectures).
In the two-layer case, we can write o (x, 0;) = b; - o4 (a;7 x), where 6; = [b; a;] denotes the con-
catenation of the second layer weight, b;, and the vector of first layer weights, a; € R, respectively.
The function o (-) represents the activation function.

Accordingly, we use the following notation for the output of a neural network containing N neurons:
1 XN
fiw) (%, ©) = ; o (x; 64) (1)

Given a dataset D = {x\), y())}™ | consisting of m observations, each with attributes x/) € R?
and desired output /) € R, we can train the neural network to discover the set of weights © that
minimizes the following loss function:

m

'C[f[N]('a@)] = %Z(f[zv](x(j),@) _ y(j))Q)

J=1

While existing analysis in this area uses the representative example of a two-layer network, Convo-
Iutional Neural Networks have a more complex architecture, which includes convolutional layers
and pooling layers. To extract local features, convolutional layers apply filters that learn to detect
specific patterns. The output of a convolutional layer [, denoted h("), is obtained by convolving the
input feature maps h(!~1 with learnable filters W) and applying an activation function, 7, that
introduces non-linearity (such as ReLU):

h® = 77/1(W(l) " h(lfl)) 3)

Such convolutional layers are typically succeeded by pooling layers, which reduce spatial dimensions
of the feature maps to create a more compact representation while retaining essential information.
For instance, max pooling will simply select the maximum value within a given local region:

b)), = Max{h®})
Three Stage Approach for Neural Network Sparsification The classic Stochastic Gradient De-
scent (SGD) algorithm is commonly used for Neural Network training, with the model’s weights
© = {04, ...,0x} typically being unconstrained [11]]. As outlined in [8], [13], and [14], the com-
putational cost and memory requirements for training large-scale, dense models as N increases
necessitates a more practical three-step procedure for finding smaller sub-networks: (i) Pretraining
- minimize (T) by performing SGD over ©, (ii) Pruning - finding a sub-network from the original
model which performs well, and (iii) Retraining - performing SGD again to maintain desired accuracy,
either using the newer model’s weights as the initial parameters (as in [14]) or starting with a new
random parametrization (as in [8]]).

In particular, the pruning stage is concerned with finding a subset of neurons S C [N] which
minimizes the loss of the newly defined sub-network: fs5(x,©) = 1/|s|> ;g o(x;0;). In particular,
we would like this sub-network’s accuracy to be comparable to the original dense model:

L[fis)] = L[fin] — 6 for some 6 € RT 5)

This allows us to find sub-networks that perform relatively well (as compared to the original dense
model) [13]]. Furthermore, in [[14], they find that pruning dense models guarantees finding more
accurate sparse networks than directly training smaller models can, which is in line with the Lottery
Ticket Hypothesis [5].

2 Background

Lottery Ticket Hypothesis The Lottery Ticket Hypothesis (LTH), proposed by Frankle and
Carbin in 2019, suggests that within randomly-initialized, dense neural networks, there exist sparse
subnetworks, or "winning tickets," capable of achieving test accuracy comparable to the original
network in a similar number of iterations. These winning tickets benefit from fortuitous initializations
that facilitate effective training. Justified by the LTH, a structured three-stage approach to neural
network sparsification emerges.

Firstly, in the identification stage, pruning techniques are employed to systematically re-
move connections from the network, thereby identifying these winning tickets. Pruning enables

significant reductions in model size by removing unnecessary parameters while preserving the
network’s essential functionality. Frankle and Carbin’s reserach consistently found that winning
tickets are less than 10 — 20% of the size of several fully-connected and convolutional architectures
for MNIST and CIFAR10 datasets [5].

Secondly, in the optimization stage, winning tickets are leveraged to design more efficient
training schemes. By focusing on training these sparse subnetworks from the start, the aim is to
accelerate convergence and improve overall training dynamics. This stage involves devising novel
training algorithms and optimization strategies tailored to the unique properties of winning tickets,
enabling faster learning and improved generalization.

Lastly, in the refinement stage, iterative pruning techniques are employed to further en-
hance the performance of the identified winning tickets. Iterative pruning outperforms one-shot
pruning in identifying winning tickets by repeatedly training, pruning, and refining the network over
multiple rounds. This iterative process results in networks that learn faster and achieve higher test
accuracy, ultimately leading to more efficient and effective deep learning models [5]].

These implications suggest that certain sparse architectures with fortuitous initializations
possess inherently better training properties and offer opportunities for efficient compression, which
involves reducing the size of neural networks while maintaining performance. This structured
approach not only advances the field of neural network pruning and optimization but also lays the
foundation for more efficient and effective deep learning models.

Suitable Feasible Regions Frank-Wolfe methods can offer computational efficiency by minimizing
a linear objective over the feasible set without needing costly projections [12]]. This advantage
extends to scenarios with polyhedral and nuclear norm ball constraints, simplifying the linear
subproblems and streamlining solutions. Additionally, their projection-free nature makes them
popular, particularly in machine learning, where they surpass methods requiring projection at each
iteration. As such, Frank-Wolfe methods are appropriate when the optimization problem’s constraints
define convex, differentiable, and compact feasible regions[l6]. Convexity ensures that the feasible
region forms a convex set, enabling efficient exploration of the solution space. Differentiability
allows for the use of gradient information to guide the optimization process towards the optimal
solution. Compactness ensures that the feasible region is bounded, facilitating convergence towards a
global optimum.

These essential characteristics of feasible regions crucial for the effective implementation
of Frank-Wolfe algorithms, particularly within the realm of large-scale optimization, has been
studied as the effectiveness of the algorithm was shown to be intricately tied to the convexity and
compactness of the feasible region, coupled with the ability to solve linear optimization subproblems
efficiently within this region [3]]. Specifically, Frank-Wolfe methods excel in scenarios where
constraints define bounded convex regions, enabling swift exploration of the solution space without
necessitating costly projection operations. This alignment fits the needs of neural network pruning
tasks, where a loss function subject to constraints on network sparsity is minimized. The convexity of
the feasible region also ensures a well-defined optimization problem, an essential factor in steering
the iterative pruning process efficiently towards an optimal solution. Additionally, the compactness
property guarantees convergence towards a global optimum, ensuring the algorithm’s resilience in
traversing the solution landscape. Furthermore, the differentiability of the feasible region enables
the computation of gradients, essential for guiding the pruning process towards optimal sparse
architectures efficiently. Compactness ensures a bounded search space, preventing the optimization
process from straying towards infeasible solutions.

By satisfying these properties, the optimization problem in neural network pruning mirrors
the characteristics of problems well-suited for Frank-Wolfe methods. The iterative nature of
Frank-Wolfe-style approaches, where solutions are iteratively refined based on linear approximations
of the objective function within the feasible region, aligns with the iterative pruning process.
Moreover, the reliance on gradients to navigate the search for optimal sparse architectures underscores
the significance of differentiability, a core property of Frank-Wolfe methods.

3 Convolutional Neural Network Pre-training and Pruning

Convolutional Neural Networks Convolutional Neural Networks (CNNSs) are a class of neural
networks primarily utilized for image classification. The defining feature of CNNs is the convolution
operation, which involves sliding filters over the input data to extract and learn important features
such as edges and textures. Key elements of CNNs include:

* Convolutional Layers: Detect features by applying various filters to the input.

* Activation Functions: Introduce non-linearity into the model, enabling it to learn complex
patterns. Eg. ReLU

* Pooling Layers: Reduce the dimensionality of each feature map while retaining the most
important information.

* Fully Connected Layers: After the convolutional and pooling layers extract and reduce fea-
tures, these layers classify the input based on the detected features by outputting probabilities
over the classes.

Resource Constrained Neural Networks and Pruning Paradigm While machine learning and
deep learning applications are increasing at an exorbitant rate, their real-world implementation is
delayed by their high computational requirements in the form of cutting-edge hardware, large memory,
and high energy use. [2]], [9] With this context, resource-constrained solutions arise. Henceforth, we
will show how pruning can help to improve efficiency in training and inference.

Neural network pruning consists of simplifying a neural network by setting some weights to zero
according to some rule. For example, a basic pruning rule may consist of removing weights smaller
than a certain threshold. Overall, the goal of running is to reduce model size and complexity without
compromising performance. In general, the pruning process is the following:

* Pre-Training: Train NN to get a baseline model.
* Pruning: Introduce non-linearity into the model, enabling it to learn complex patterns.

* Re-Training: Reduce the dimensionality of each feature map while retaining the most
important information.

Note that pruning and re-training may be done in an iterable manner; this is known as the tunning
stage. Also, under some methods, re-training may not be necessary given the needs of the user

Within the perspective of resource-constrained neural networks, a pruned network is smaller than
the baseline model and this achieves better efficiency for inference tasks. From the angle of training,
pruning may also be beneficial because rather than training a large network to a full extent, the
large network is trained only up to a point from which a sufficiently good subnetwork is identified.
Therefore, even when considering pre-training and re-training, pruning may lead to using fewer
resources as, after pruning, the rest of training is done in a smaller network.

Finally, note that this framework also applies in the case of CNNs, which are the base of our
computational study.

Frank-Wolfe for Pruning To find well-performing smaller sub-networks within dense models that
are pre-trained via stochastic GD, Frank-Wolfe-style approaches can be used [13] [14], where the
desired sparsity level is treated as a constraint. Thus, even though Neural Network training itself is a
non-convex optimization problem, the pruning stage can be reformulated as a constrained convex
optimization problem, with Frank-Wolfe-style approaches being used [[13]].

Frank-Wolfe in Machine Learning Context The classic FW algorithm (and related projection-free
methods) provides an alternative to projected Gradient Descent for convex-constrained optimization
problems. Its low per-iteration complexity and suitability for complicated constraints makes it very
effective in the context of large-scale machine-learning problems [[10]].

FW replaces the projection step of projected GD with a linear minimization sub-problem that can be
described as follows:

We form the next iterate by taking a convex combination between (i) the previous iterate and (ii) an
extreme point of the feasible region that best approximates the gradient direction. [10] This ensures
we retain feasibility within each iteration, without using a projection step. Thus, FW is particularly
advantageous when the traditional projection step in projected GD is computationally expensive [6]].
See the pseudocode description for the classic deterministic variant below:

Algorithm 1 Classic (Deterministic) Frank-Wolfe Algorithm [4], [6]
Input: x, € C = initial starting point; 7" := number of iterations
fort=0,1,...,7T do
vy < argmin, (¢, Vf(2;)) > Approximate gradient direction, maintaining feasibility

2
+2
Ty — (1 —)z + oy > Convex combination: previous iterate and v,

end for

Y

In Algorithm (), we can also substitute the linear minimization v; = argmin,, . (z¢, V f(2¢)) with
an approximate approach, as opposed to solving for the minimizer exactly [6]. Another simple
modification is to perform a line search within each iteration ¢ for the optimal « required to find the
best next iterate on the line segment connecting x; and v, [6].

4 Pruning Algorithms

Simple Pruning The first algorithm takes a naive approach to pruning. First, all of the weights of
the model are retrieved and sorted based on magnitude. A certain percentage of the weights with the
lowest magnitude are set to zero based on a user-defined pruning percentage.

Algorithm 2 Simple Pruning

Input: M € M, a neural network model; p € [0, 1], pruning percentage; D, training dataset; E,
epochs for retraining

W« weights of M > Retrieve model weights
n <+ |[W]| > Total number of weights
n, < round(p - n) > Compute number of weights to prune
Wy < flattened W > Concatenate all weights into a vector

idxs < indices sorted by |y
I, < first n, elements of idxs

fori c I, do
Weli] <0 > Set pruned weights to zero

end for
Update W of M with Wy

Set optimizer, loss, and metrics for M
Retrain M on D for E epochs
return M

Frank-Wolfe Pruning The second algorithm considers a randomly chosen subsample of the
weights and takes gradient information into account when selecting weights to prune. Rather than
pruning a fixed percentage of the weights, the pruning mask is applied based on a user-defined target
sparsity level. This method takes into account cases in which smaller weights are actually more
integral to the structure of the CNN and thus is more flexible than the simple pruning algorithm.

Algorithm 3 Frank-Wolfe Pruning

Input: M € M, neural network model; D, training dataset; s, target sparsity level, N, number of
pruning iterations; S, subsample size; E, epochs for retraining
Initialize optimizer (SGD)
for i =1to N do
G < zeros (shape of M’s trainable weights)
subsample < sample S instances from D
for each (z,y) in subsample do
G + G + Vloss(M, z, y, optimizer)
end for
ifi mod (%) =0 then
Apply pruning to M based on G and sparsity s
end if
Retrain M using D for E epochs
end for
return M

Frank-Wolfe Pruning + Momentum The third algorithm has two main modifications compared
to the basic frank-wolfe method: dynamic sparsity and momentum. The target sparsity level is
determined by the user. However, the sparsity of the model is increased iteratively which potentially
minimizes large decreases in model performance at each iteration. Additionally, a user-defined
momentum vector is applied to the gradients in order to further differentiate the weights and stabilize
the algorithm.

Algorithm 4 Frank-Wolfe Pruning + Momentum

Input: M € M, neural network model; D, training dataset; iy, initial sparsity; Sgn,, final
sparsity; m, momentum parameter; N, number of iterations; F, fine-tuning epochs; .S, subsample
size; Optimizer
AS — Snnal]VSmu
S < Sinit
fori =1to N do
G < zeros (shape of M’s trainable weights)
subsample < sample S instances from D
for each (z,y) in subsample do
G + G + Vloss(M, z, y, Optimizer)
end for
G—m-G > Apply momentum to gradients
Apply pruning to M based on G and sparsity s
if £ > 0 then
Retrain M using D for E epochs
end if
s < min(s + As, Sfnar)
end for
return M

S Numerical Experiments

Datasets For our computational study, we consider image classification problems. Here we used the
MNIST [[7] dataset as our baseline. This dataset contains handwritten digits, with 60,000 examples
in the training set and 10,000 examples on the test set. The digits are centered in 28x28 grayscale
images. The only pre-processing applied to the data is normalization of the grayscale by dividing the
value of each pixel by 255, ensuring that the pixels used as input for the model are between 0 and 1.

Network Architecture For our numerical analysis, we employ a CNN designed for the classification
of 28x28 images into 10 categories, as is the case for the MNIST dataset. The architecture is detailed
in Table 1.

Layer Type

Configuration

Purpose

Convolutional

32 filters of size 3x3, ReLU activation

Captures basic features from input
images, introduces non-linearity.

Max Pooling

Pool size of 2x2

Reduces spatial dimensions, making
the detection of features somewhat
invariant to scale and orientation
changes.

Convolutional

64 filters of size 3x3, ReLU activation

Increases the complexity of the model
to capture more detailed features.

Max Pooling

Pool size of 2x2

Further reduces spatial dimensions,
focusing on the most important
features.

Flatten

Transforms 3D feature maps into 1D
feature vectors.

Dropout

Dropout rate of 0.5

Prevents overfitting by randomly
setting input units to 0 during training.

Dense

10 units, Softmax activation

Outputs the probability distribution

over the ten classes.

Table 1: CNN Architecture for MNIST Classification

Training and pruning setup. We train the base CNN on MNIST using stochastic gradient descent
and sparse categorical cross-entropy. We vary the dense pre-training budget from 1 to 10 epochs;
for each budget we save a checkpoint of the dense model and then apply each pruning strategy
independently to that checkpoint. All pruning methods act only on the convolutional and fully
connected layers; pooling, flatten, and dropout layers are left unchanged. The simple pruning baseline
removes weights using a greedy backward-selection rule until a target sparsity is reached, followed
by a short fine-tuning phase. The Frank—Wolfe (FW) variants use iterative pruning: at each iteration
we estimate weight importance on a small subsample of the training data, prune in the FW direction,
and fine-tune for a few epochs. In the FW+momentum variant, the FW direction is replaced by an
exponential moving average of past gradients, so sparsity increases gradually from an initial value
Sinit t0 a final target sgna. In all subsequent figures, the horizontal axis (“Epochs”) should therefore
be read as pre-training budget: each point corresponds to a different dense checkpoint pruned and
fine-tuned independently, not to continued training of a single model.

Results and Analysis We evaluate the pruning methods in terms of test accuracy, test loss, normal-
ized inference time, and the fraction of non-zero weights, as shown in Figures

Accuracy and loss. Figure |l|(top) tracks test accuracy as we vary the dense pre-training budget
from 1 to 10 epochs. All methods improve with more pre-training, but the ordering between pruning
strategies is consistent. With just a single pre-training epoch, the base model and simple pruning reach
only about 0.78-0.79 test accuracy, whereas FW and FW+momentum are already in the mid-0.80s.
After 10 epochs, FW+momentum reaches roughly 0.94 accuracy, compared to about 0.88 for FW,
0.85 for simple pruning, and a similar range for the unpruned baseline.

Interpreting the x-axis as pre-training budget makes the efficiency gain clear. After only /-2
pre-training epochs, FW+momentum already reaches about 0.86—0.88 test accuracy, matching or
exceeding the accuracy of the dense baseline and simple pruning baselines even when they are
pre-trained for 8-10 epochs (approximately 0.85-0.86). In other words, FW+momentum lets us stop
dense pre-training much earlier while still attaining, and often improving on, the final accuracy of
models that were fully pre-trained.

The loss curves in Figure [I] (bottom) exhibit the same pattern. FW+momentum yields the lowest test
loss at every pre-training budget, ending around 0.28 after 10 epochs, substantially below both the
base model and simple pruning, and noticeably below FW without momentum. Simple pruning, in
contrast, never clearly improves on the base network and can slightly worsen both accuracy and loss
when pre-training is short.

Model complexity. Figure[2]reports the percentage of non-zero parameters remaining after pruning,
relative to the base model. The simple pruning baseline hovers close to 50% of the original weights

Model Accuracy Over Epochs

method .

—e— Base Model
0.92 Simple Pruning GBS

—e— Simple FW
0.90] —* FW with Momentum

e
//o \ /

0.88 4 —

R

Accuracy

2 4 6 8 10
Epochs

Non-Zero Parameters as Percentage of Base Model Parameters Over Epochs

&
@

S
-]

Percentage of Non-Zero Parameters (%)
& £
&

=
S

method

—e— simple Pruning GBS
Simple FW

| —e— FW with Momentum

2 4 6 8 10
Epochs

Figure 1: Test accuracy (top) and loss (bottom) of pruned and unpruned models as a function of
pre-training budget (epochs).

across all pre-training budgets. Both FW variants produce consistently sparser networks: they remove
several additional percentage points of weights beyond the simple method, with FW+momentum
always at or below the sparsity achieved by vanilla FW. Even though the absolute gap is modest in
this small CNN, it shows that FW+momentum is more aggressive at removing redundant filters while
still improving accuracy.

Computational efficiency. Figure[3]shows the per-example inference time on the test set, normalized
by the unpruned model. Because our implementation does not exploit sparse kernels, all pruned
models incur a runtime overhead of roughly 2—-2.5x compared to the dense baseline. Within that range,
however, the FW-based methods are consistently faster than simple pruning, and FW+momentum
is typically the fastest of the three pruning strategies. Thus FW-style pruning does not pay an extra
runtime penalty over greedy backward selection in our setup; if anything, it slightly reduces inference
time for a given level of sparsity.

Key takeaway. Across all pre-training budgets, FW+momentum is the only method that simultane-
ously increases accuracy, decreases test loss, and yields the sparsest models among the algorithms
considered. Simple greedy pruning acts more like a noisy perturbation than a principled compression
method: it rarely beats the unpruned baseline, barely reduces the parameter count, and is slower at
inference time. For practitioners constrained to short pre-training schedules or limited hardware,
FW-+momentum therefore appears to be the safest default choice among the pruning strategies we
tested.

Non-Zero Parameters as Percentage of Base Model Parameters Over Epochs

50.0 —

method
—e— simple Pruning GBS
48.0 Simple FW
—e— FW with Momentum

M SN

46.5

Percentage of Non-Zero Parameters (%)

46.0 1

2 4 6 8 10
Epochs

Figure 2: Percentage of non-zero parameters in neural networks post-pruning, relative to the unpruned
base model, across different pre-training budgets (epochs).

Normalized Inference Time Per Model

N
N

. . — T,)
-{.E:/——‘a% \°=‘—=°'<.

™~
)

method

—e— Base Model
Simple Pruning GBS

—e— Simple FW
—e— FW with Momentum

Inference Time (Normalized to Base Model)
I I I
IS @ @

=
~

1.0

2 4 6 8 10
Epochs

Figure 3: Normalized inference time on the test set (lower is better) for each pruning method, as a
function of pre-training budget (epochs).

6 Conclusions

We studied algorithmic variants of Frank—Wolfe for pruning convolutional neural networks, comparing
a simple magnitude-based pruning baseline, an FW-style pruning scheme, and an FW method with
momentum. On a CNN trained on MNIST, FW+momentum consistently produced the best trade-off
among the methods considered: it achieved higher test accuracy and lower loss than both the dense
baseline and the simple pruning method, while also yielding the sparsest models and incurring no
additional inference-time overhead in our implementation.

Perhaps most importantly, treating epochs as pre-training budget shows that FW+momentum can
be applied after only 1-2 epochs of dense training and still match or surpass the accuracy of fully
pre-trained baselines. This suggests that full pre-training of the dense model is unnecessary in this
setting, which is especially attractive when compute is limited or rapid model iteration is required.
Overall, our results indicate that Frank—Wolfe with momentum is a promising and practical tool for
compressing CNNs in resource-constrained environments.

7 Further Research

Generalizability and Comparison with Other Pruning Methods Despite the positive results
attained with our numerical experiments, it is still to be seen if these results can be generalized to
other settings. With access to more computational resources, the performance of FW pruning may
be evaluated by using optimizers other than Stochastic Gradient Descent (SGD), such as ADAM.
Moreover, to further test the generalizability of our FW pruning methods, their performance could be
tested on established architectures such as ResNet, AlexNet, or VGG. Likewise, one could also test
the generalizability from varying the dataset by using datasets such as Fashion-MNIST, CIFAR-10,
or ImageNet. Overall, despite promising results, more computational resources are needed to test the
performance of our pruning methods in a general setting.

Moreover, performing these tests would allow us to compare performance against other pruning
methods. To do this, we should suggest using a wide benchmark, such as the one available with
ShrinkBench [[1]], to allow a systematic review of the models’ performance.

Structured Pruning The pruning paradigm we considered before, which masks certain weights
as zeros, is known as unstructured pruning. On the other hand, we have structured pruning, which
removes entire units, such as neurons, layers, or filters from the NN/CNN. That is, structured pruning
changes the architecture of the network rather than masking weights. Combining the algorithms
developed in this paper with structured pruning may lead to even stronger numerical results as model
size and complexity could be reduced to a greater extent.

Greedy Forward Selection [14]. Another pruning methodology that could be considered for
future research is greedy forward selection. Instead of traditional pruning methods that use backward
elimination to remove redundant and Byzantine neurons from the larger network, greedy forward
selection begins with an empty model, and sequentially adds neurons from the original network that
result in the greatest immediate decrease in the loss function [14]. The main advantage of this scheme
is that there is no need to prune after pre-training, as a subnetwork is found while training. Hence,
this approach may be of particular interest in resource-constrained environments.

8 Acknowledgements

This work originated from a project carried out in Spring 2024 under the supervision of Prof.
Anastasios Kyrillidis at Rice University. We thank him for helpful feedback and suggestions.

10

References

[1] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the
state of neural network pruning?, 2020.

[2] Ting-Wu Chin, Cha Zhang, and Diana Marculescu. Layer-compensated pruning for resource-
constrained convolutional neural networks, 2018.

[3] Lijun Ding and Madeleine Udell. Frank-wolfe style algorithms for large scale optimization,
2018.

[4] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95-110, 1956.

[5] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural
networks. CoRR, abs/1803.03635, 2018.

[6] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 427435,
Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR.

[7] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[8] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. CoRR, abs/1810.05270, 2018.

[9] Mariusz Pietrotaj and Marek Blok. Resource constrained neural network training, Jan 2024.

[10] Sebastian Pokutta. The frank-wolfe algorithm: A short introduction. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 126:3-35, 2024.

[11] Sebastian Pokutta, Christoph Spiegel, and Max Zimmer. Deep neural network training with
frank-wolfe. 2020.

[12] Haoyue Wang, Haihao Lu, and Rahul Mazumder. Frank-wolfe methods with an unbounded
feasible region and applications to structured learning, 2021.

[13] Cameron R. Wolfe, Fangshuo Liao, Qihan Wang, Junhyung Lyle Kim, and Anastasios Kyrillidis.
How much pre-training is enough to discover a good subnetwork? 2023.

[14] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good
subnetworks provably exist: Pruning via greedy forward selection. 2020.

11

	Problem Statement and Notation
	Background
	Convolutional Neural Network Pre-training and Pruning
	Pruning Algorithms
	Numerical Experiments
	Conclusions
	Further Research
	Acknowledgements

